

Applications of Computer Vision

<u>Manuel</u> J. Marín-Jiménez

University of Córdoba (Spain)

Department of Computing and Numerical Analysis e-mail: mjmarin@uco.es

Where do I come from?

University of Córdoba (Spain)

Where do I come from?

Polytechnic School of the University of Córdoba (Spain)

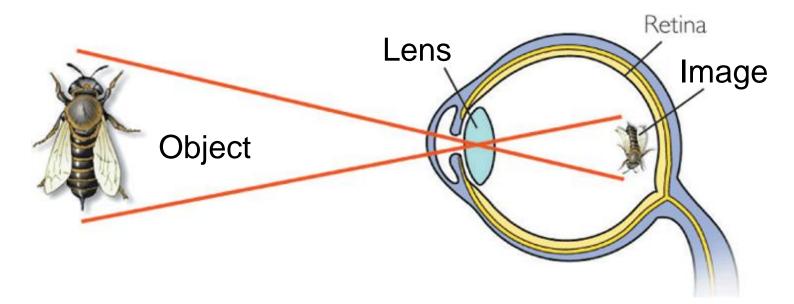
Who am I?

- Research group: Artificial Vision Applications (AVA)
 - 7 permanent Professors
 - 6 PhD students
 - 1 Postdoc
 - +undergrad students

Overview

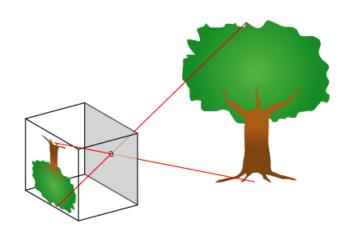
- Introduction to photography
- Digital Images
- Computer Vision concept
- Fields of applications
- Project RehApp
- Concluding remarks

Introduction to photography


• **Photo**: visual representation (2D, flat) of a scene (3D)

The human eye

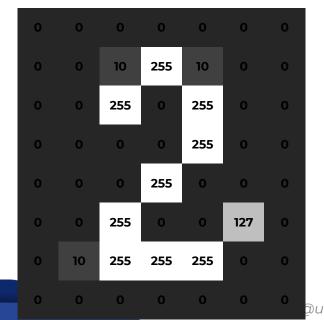
Our brain understands the inverted image

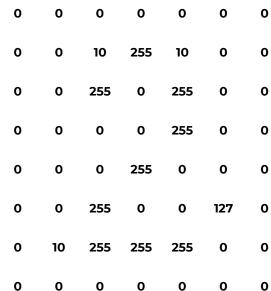


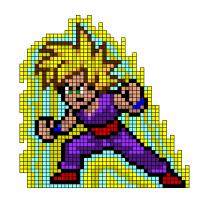
Camera projection: pinhole model

 From 3D world to 2D images: light enters through a tiny hole → inverted image

Overview

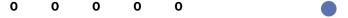

- Introduction to photography
- Digital Images
- Computer Vision concept
- Fields of applications
- Project RehApp
- Concluding remarks





Digital images

- Image = matrix with integer values
 - Colour = tuple (R, G, B)



Pixel intensities

Image resolution

How many pixels?

128

256

512

Overview

- Introduction to photography
- Digital Images
- Computer Vision concept
- Fields of applications
- Project RehApp
- Concluding remarks

Computer Vision

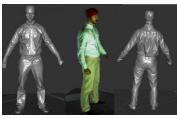
 Wikipedia says: scientific discipline that includes methods for acquiring, processing, analyzing and understanding real-world images [...] that computers can perceive and understand an image or sequence of images and act [...].

Computer Vision: is it easy?

Humans spend much time with eyes open

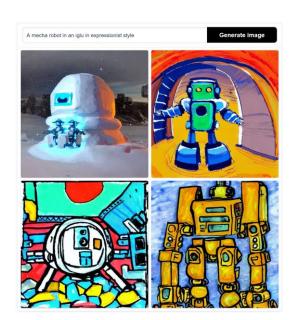
- Human perception → 5 senses
 - Sight (Vision)
 - Hearing (Audition)
 - Touch (Somatosensation)
 - Taste (Gustation)
 - Smell (Olfaction)

Overview


- Introduction to photography
- Digital Images
- Computer Vision concept
- Fields of applications
- Project RehApp
- Concluding remarks

Applications

- Model objects or environments (robots)
- Recognizing actions and people (security)
- Sports
- Automatic industrial inspection
- Medicine
- Help to identify species/classes
- Organizing images and videos (search)
- Human-machine interaction (entertainment)
- Content generation

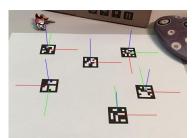


Trendy application: Vision and Language

Dall-E, Stable Diffusion, Midjourney, ...

Trendy application: Vision and Language

Apophenia


Made with Bing Image Creator

AVA Research lines: ArUco markers

Camera pose estimation → e.g. Augmented Reality

AVA Research lines: human action analysis

Actions and interactions

AVA Research lines: Biometrics (gait)

I'll identify you by the way you walk

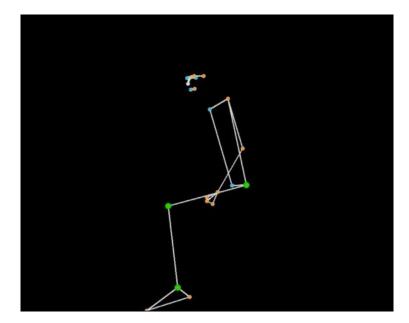
Overview

- Introduction to photography
- Digital Images
- Computer Vision concept
- Fields of applications
- Project RehApp
- Concluding remarks

Project: RehApp

common intervention in orthopedic surgery

- Home exercise plan
- Essential to recover mobility
- If not daily or incorrect exercises → possible problem
- Performing exercises → hard task, pain



Project: RehApp

Help to perform rehabilitation exercises at home

Project: RehApp

Objectives:

- Personalized analysis patient evolution ->
 from home (no travel), own smartphone
- Quantify degree of mobility -> mobile camera + Al
- Detect problems early during recovery ->
 early care

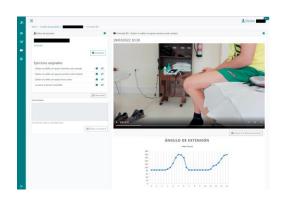
Project RehApp: solution

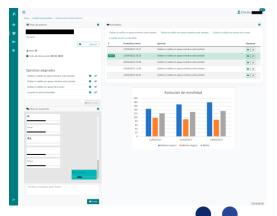
✓ Web receives and processes data → only access medical doctor

✓ App records videos → used by patient

Project RehApp: app

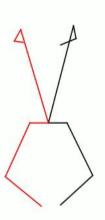
- ✓ List of exercises
- ✓ Videos and text for assistance
- ✓ Records and sends sessions
- ✓ Private chat with medical doctor

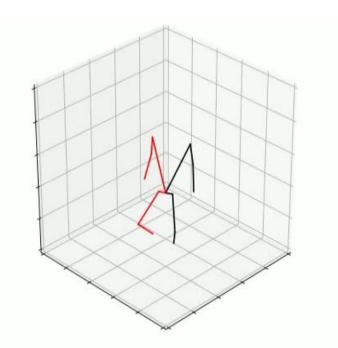




Project RehApp: website

- ✓ Sign up of patients
- ✓ Customize exercises per patient
- ✓ Visualize videos and add private notes
- ✓ Send private messages to patients
- ✓ Tracking of mobility evolution



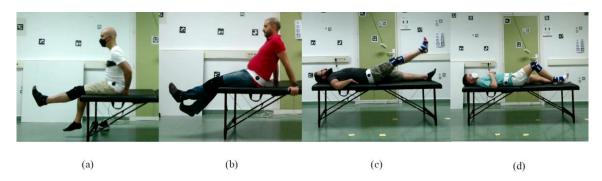


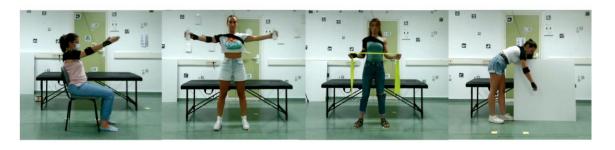
Project RehApp: skeletons 2D & 3D

✓ Computer Vision → Human Pose Estimation

Project RehApp: example

✓ Flexion angle → repetitions





Project RehApp: dataset

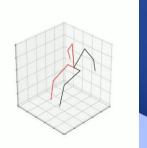
(e)

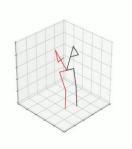
✓ Not limited to knees

Overview

- Introduction to photography
- Digital Images
- Computer Vision concept
- Fields of applications
- Project RehApp
- Concluding remarks

Take-home messages


- Computer Vision has arrived to help us
- Many applications benefit from Computer Vision
- Human-centric video analysis
- Aids physical rehabilitation


Applications of Computer Vision

<u>Manuel</u> J. Marín-Jiménez

University of Córdoba (Spain)

Department of Computing and Numerical Analysis
e-mail: mjmarin@uco.es
Twitter: @ucoava

